Type | Input data is: | Method | MatLab | IPython | Python | Data requirement |
---|---|---|---|---|---|---|
Uncertainty propagation | Independent | AUP | x | x | x | mean, dispersion parameter (e.g. standard deviation) |
FIA | x | possibility function (e.g. a trapeziod function requires a central, minimum and maximum value) | ||||
MCS | x | x | x | mean, dispersion parameter, probability density function (pdf) | ||
LHS | x | mean, dispersion parameter, pdf | ||||
QMCS | x | mean, dispersion parameter, pdf | ||||
Correlated | AUP_corr | x | mean, dispersion parameter, covariance | |||
LHS_corr | x | mean, dispersion parameter, normal distribution, covariance | ||||
Local SA | Independent | MPM | x | x | x | base value (could be the mean) |
Screening | Independent | MEE | x | range (minimum and maximum value) | ||
Global SA | Independent | SSRC | x | x | x | mean, dispersion parameter, pdf |
SSCC | x | x | x | mean, dispersion parameter, pdf | ||
KIA | x | x | x | mean, dispersion parameter | ||
Sobol' | x | mean, dispersion parameter, pdf | ||||
RBD | x | mean, dispersion parameter, pdf | ||||
Correlated | GSA_ana_corr | x | mean, dispersion parameter, covariance (assumes normal distributions) | |||
GSA_sam_corr | x | mean, dispersion parameter, normal distribution, covariance |
Abbreviations:
ana: analytical; AUP: analytical uncertainty propagation; FIA: Fuzzy interval arithmetic; GSA: global sensitivity analysis; KIA: key issue analysis; LHS: Latin hypercube sampling; MCS: Monte Carlo sampling; MEE: method of elementary effects; MPM: mutliplier method; pdf: probability density function; QMCS: quasi-Monte Carlo sampling; RBD: random balance design; SA: sensitivity analysis; sam: sampling; SSCC: squared Spearman correlation coefficients; SSRC: squared standardized regression coefficients.
Source: PhD thesis Evelyne Groen, An uncertain climate: the value of uncertainty and sensitivity analysis in environmental impact assessment of food, 2016
ISBN: 978-94-6257-755-8; DOI: 10.18174/375497